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TESTING HYPOTHESES WHICH ARE

UNIONS OF LINEAR SUBSPACES

by

Roger L. Berger and Dennis F. Sinlair

ABSTRACT

The likelihood ratio test (LRT) for hypotheses which are unions of

linear subspaces is derived for the normal theory linear model. A more

powerful variant of the LRT is proposed for the case Ln which the subspaces

are not all of the same dimension. A theorem is proved which may be used

to identify hypotheses which are unions of linear subspaces. Some hypotheses,

of particular relevance in ecology, concerning the spacings between normal

means are shown to be unions of linear subspaces and are therefore testable

using the LRT. Finally, the computation of the LRT statistic is discussed. <Z
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1. Introduction.

Character displacement is an ecological process by which coexisting

species diverge in size to reduce competition (see Grant, 1972, and

Sinclair, Mosimann, and Meeter, 1982, for details). The size variable

is chosen to reflect competition between species, e.g., bill length for

birds. A typical situation is as follows. An island has been colonized

by J species within some family from the nearby mainland. If character

displacement is occurring, the species should be more dissimilar on the

island, where the variety of resources is limited, than on the mainland.

Recently, there has been much controversy in the ecological literature

concerning the existence of character displacement (Strong, Szyska, and

Simberloff, 1979; Grant and Abbott, 1980; Hendrickson, 1981; and Strong

and Simberloff, 1981). We list below four hypotheses arising in character

displacement studies. These hypotheses are all in a class for which we

derive the LRT. Tests of these hypotheses may help resol* e the controversy

surrounding character displacement.

Let the mean size measurements be denoted Vij, i = 1 (island), 2 (main-

land), j a 1, ..., J (species). Let the ordered species means on the

mainland and the island be denoted

" Pi(1) ' Pi(2) Il "" i(J) - i a 1, 2.

The four character displacement hypotheses relate to these ordered means.

They are the following.

w 0e (jsl) the "g(Ji-nJ) (J-j)t or, a t(J-)/2],

fi where [s] denotes the greatest integer less than or equal to s.
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Ro. 0 1(j ) "1(j) " c 1(2)'1(1 ))) j 2, ... , J-l,

where c2, ... , cj 1 are specified positive constants with c j = cj 3

j=2, ..., J-2, and Ca.1 = 1.

. J - .
H0  P(j,1) - 11(j) ' 2(j.1) - 2(j)' I 9*~ 1

' l " l(j) '2(j~l) p2(j)' 3 - 1, ... , J-1

H 1 0 :) P ) .jCU(2)-Ul(I)), j 2, ... , J-1

2where the c. are as in H0.
qJ

Hypothesis H0 states that the island means are arranged in a symetric

2fashion. Hypothesis H0 specifies the relative sizes of the spacings

between the means in the symmetric pattern. A commonly claimed mani-

festation of character displacement is equally spaced species sizes (Strong,

Szyska, and Simberloff, 1979) corresponding to c. 1, j - 2, ... , J-l,3
2 3

in H . Hypothesis H0 states that the corresponding spacings on the island

and the mainland are equal while the relative sizes of the spacings are

specified in H0 .

In Section 2 we derive the LRT for hypotheses which are unions of

subspaces. (Throughout this paper, "subspace" refers to a linear subspace.)

In Section 3 we prove a theorem which may be used to identify hypotheses

with this property. We use the theorem to show that the above four hypo-

theses are unions of subspaces and thus may be tested with the LRT of

Section 2. Finally, in Section 4 we discuss how the test statistic may

be computed.



3

2. Likelihood Ratio Test.

Let Xl, ..., XK denote independent normal random variables with

means 1, ..., CK and common variance a2 . We assume that = (CI' "",

lies in w, a subspace of RK of dimension J < K. For example, Xl, .. , XK

may be comprised of independent samples from J populations (J < K). We

will discuss testing hypotheses about j which are unions of subspaces of

w. In this section we derive the LRT of

HO : I e wO versus HI: j e w-wO

(2.1) m

where w0 u w. and each w. is a qi dimensional subspace of w.
i=l i i

We will show that the critical value for the LRT is a multiple of a percentile

from an F distribution. We will also describe a modification of the LRT

which has a higher power than the LRT if at least two of the wi have dif-

ferent dimensions. Throughout we assume that (2.1) has been expressed in

such a way that the are all distinct, that is, there do not exist i and

, i, j , i 0 j, such that wi  C W.

Let the density of u (X, ..., XK) be denoted by

(2.2) p(Z; ,o) = (2o 2) K/2 e:I(- i-i)2/2o2).

Let =((, 0): C Wi t a > 0), 0  (, ): C wool a > 0 a u

and 0 a (( a): & e w, a > 0}. The LRT statistic for testing H0 is defined

as

sup p(Z; io)
00

(2.3) "z
sup p(; 9, r-

"J
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If we let C denote the projection of I on ao and denote the projection

of on is then X(A) is

max sup p(x; C,o)
l~i.m e.XC ) " 1

sup piz; Ta)

sup p(C; E:,)
ei -~

- max
1im sup p(; ;,o)e~

(2.4) 11l /2

,-2 K/2

- I ll

Il ~m J
m in 111- ill12

[ISi5m

where iIyX1 2 =oyy. The third equality in (2.4) is a standard result from

linear models theory. The last expression in (2.4) reflects the fact that

the maxiuum likelihood estimate of C under H0 is the projection of X on

the nearest subspace wi Since 34 II-II2 * I* IH-1i2. rejecting

H0 if A() < c is equivalent to rejecting H0 if A(A) > c' where

m in Ili-titll
(2.5) '( = lsm

Te vII a iT

i The value of c* which produces a size a test is given in Theorem 1.

I " ' "ii i I l i l ll M iI l k M .-
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Theorem 1. Let F,a,b denote the upper 100 a-percentile of an F distri-

bution with a and b degrees of freedom. Let c* = C max (J-qi) K)/(K-J).
a l iJ qi"Ki'

The test which rejects H0 if A*(X) > c* is a size a test, that is, the test

satisfies

(2.6) sup P (A() >c) -.

0

Proof. For any e wand a > 0,

P ,C~('*,)>c*) S; P ,aC114- 11 2/ - 2 > )

5 ,ol 2 .jl/ll -ill 2-  > (Jq)
&,aqj _j OI.qj, K-j/ (K-J))

=a.

The last equality is true since a standard result from linear models theory

states that for any & e w. and a > 0, [(K-J)/(J-q.)]Ij&-.JI2/jI- I2 has
j 3 3

an F distribution with J-q. and K-J degrees of freedom. Thus

(2.7) sup P9,0 (A*() > c:) S a.e0
0

To prove the reverse inequality, let j be such that

(J-qj)FaJ'qj' K-j/(K-J) a max (J-qi), /(K-J) = c*. We have
Iss aJq.K- J-qiK-Ja

assumed that w. is not a subset of wi for any i * j. So for every

i • 1, ... , m, i t j, Wi n w. is a subspace of dimension at most q.-1.
m

The set, u {wi n w)j cannot contain the qj dimensional set wj since each

iNj

Lk "m- nm l" - m mn mu-- m L m ml 
m m m l w mr m = m m
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set in the union is at most (q.-l) dimensional. Thus there exists C,

such that c w and C' wi for any i = 1, ...,U , i * j.

Fix a > 0. We will consider the sequence of parameter points (kW, a),

k = , 2.... Note that kW e w. for every k since w. is a subspace.

Let &I denote the projection of " on w. Then the projection of k4* on

W is K! and IlkJi-kJIIJ2 a k2  L1- -. 2 as k -'. since 2 > 0
i 1

for i = 1, ... , m, i a j.

For i - , ... , m, let Ri {;: I1 -jil2/ll;-_ll2 > c*}. At (k', o)

[K-J) /(J-qi) ' has a noncentral F distribution with J-qi

and K-J degrees of freedom and noncentrality parameter 6 k i 2  2 2

For i = 1, ... , m, i j, 6 k - as k - a. So for i = 1, ... , m, i j

(2.8) PkE*,,(Ri) I 1 as k 4w.

On the other hand [(K-J)l(J-q)JII-Ij 112/ 11_I1 2 has a central F distri-

bution with J-qj and K-J degrees of freedom. Furthermore,

= (J-q )F/q, (K-J). Thus

c. (-j a,J-qjK-J/

(2.9) PkW, o(J) (R a for every k = 1, 2,

Using (2.8) and (2.9) we obtain

lir k >*(X(X) Ca) ira k-. . R

li - P COU R4J
k - em i l 'ili I P J (
k-wi m
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lim I Pkc*,a(Ri)
r 1 I- (l-ca) . lrn

iaj

Since (kC*, a) c ej c % for every k,

(2.10) sup P(A*()> ca) > lim PkI, o(A ) c) > C i.
e0  k~0

Combining (2.7) and (2.10) yields (2.6). I

We believe that in most applications all of the wi, i = I, ... ,

will have the same dimension q, in which case c. - (J-q) Cjq,K-j/(K-J).

This is the case for all the examples we discuss in Section 3. But if

the dimensions of some of the wj differ, there is a modification of the

LRT which is also a size a test and has higher power than the LRT. This

test is described in Theorem 2; it is the LRT if all the wi have the same

dimension.

Theorem 2. Let F= i - 1, ... , m. The

test A** which rejects H0 if and only if F > F for every

i = 1, ..., m is a size a test. The test A** has a power which is greater

than or equal to the power of the LRT for every (a, e) E 0.

Proof. The proof that A** is a size a test is almost identical to the

proof given in Theorem 1 that X" is a size a test. In this case any wi,

i a 1, ..., m, can play the special role played by w in the second half

of Theorem 1.
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The (I: X*( >c) Fi • FaJq.K .JD 1 = l, ...> mc. That is,

the rejection region for the LRT is a subset of the rejection region for

)**. Thus the power of X** is greater than or equal to the power of the

LRT. II

Unless all of the quantities (J-qi)Fa ,Jqi,K-J/CK-J), i = 1, ... , m,

are equal, the rejection region for the LRT is a proper subset of the

rejection region for )** and the power for the LRT is strictly smaller

than the power of A** for every parameter in HI. This provides an example,

like that of C. Stein (see Bickel and Doksum, 1977, p. 239), of a LRT

whose power is everywhere dominated by the power of another test.

The test which rejects Hoi: E C W if F > F is a size a
1 a,J-qiK-J

test of H .. The test of H0 in Theorem 2 rejects H0 if and only if for

each i the test based on Fi rejects H0i. Tests of this form have been

called intersection-union tests by Gleser (1973); they have also been

discussed by Berger (1982).

3. Hypotheses Consisting of Linear Subspaces.

In the remaining sections, we discuss some specific problems which

fall into the general framework described in Section 2. These problems

involve hypotheses about the spacings between normal means. The ecological

problem which motivated our interest in these hypotheses was described

in Section 1.

We will consider the following special case of the model presented

in Section 2. Let Xijk, i = 1, ... , I, j = 1, ... , Jib k = 1, ... , Kij

denote KCK i j independent normal observations. The nean of Xijk is
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P jand all the X ijk have a common variance of a Let

3 ~ ~ i Pli. 11 J'~21' Pli ~ n

1 I

vector of b ones. In the formulation of Section 2 we would consider

c w c R. Since here there is a one to one correspondence between P

and C~, we may equivalently consider v~ eC where J = J.. We now consider

i.i

the subspaces w3, i a 1, ... , m, as subspaces in Rj.

We will be concerned with permutations of (Pilo. U.,iii for each

i.i

i = 1s ... ~ I . Let Pi 0Pio... 0j M ) so that v P** .

ii

A map w: e -e4 is called a subpermutation if (0) e(w

where (1 is a permutation of 1 , i 1, ... i. There are n J I sub-

permutations. A set A c jeis called subperinutation invariant if ~iA

implies ofuid A for every subpermutation . A set B is called a subpermu-

tation of a set A if B is the image of A under some subpermutation wr. It

is easily verified that if A is a subspace then any subpertation of A

is also a subspace.

The following theorem may be used to identify hypotheses which are

unions of subspaces, We shall use this theorem to show that the ordered

mean hypotheses in Section 1 are unions of subspaces and hence are testable

using the LRT of Section 2.

TheoreA m 3. Let w be a subperutation invariant subset of R. Let H

denote a (J-q) x J matrix of rank J-q. Let N a . chre u e Let

0 prt ions U i 1, se. 1 ). if N n 0 a w n 0

ratnd c a ethenwo a B where m AJ u1de is the q dimensional sub-

space N, and w i2 A s are the subpermutations of N. Thus is the

unio of q dimensional subspaces.
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m

Proof. Suppose i e u w.. Then u = w€u*) for some U* c N and some sub-" i=l 1  - ~

permutation w. Since N c w0 and w0 is subpermutation invariant,
m

~ = W(*) w 0 " Thus uw C. W
0' ijul 1

Now suppose U c at Let U* be a subpermutation of U such that

?* V < p'Ji i = IN ... , I. By definition, * c 0. Also, u* e
1ii iji ,

since w is subpermutation invariant. Thus, c w n 0 = N n 0 c N.! m
Since U is a subpermutation of p e N, e w. for some i. Thus w c U W..1 0 i=l

Finally, since N = w is a q dimensional subspace of 1.?, each of

the subpermutations of N, w 20 ...0 Wm is also a q dimensional subspace

of RJ. 1

The subspaces w,, "." wm defined in Theorem 3 will not be distinct.

As will be seen in the following examples, the number of distinct sub-

spaces will be much smaller than m (at most m/2, in fact). Recognizing

this fact results in a saving of effort in the computation of the test

statistic X* for which the minimum needs to be taken only orer dist'.nct oub-

spaces. Taking the minimum over all m subspaces in Theorem 3 will, of

course, give the same. value of Xe. It would just be inefficient since

mary of the subspaces are equal.

We now consider the four hypotheses about the spacings between normal

means discussed in Section 1.

Example 1. (Symmetric Spacings). For this example, I = 1, so .we will

dcnote the means by i1t ... , i and the ordered means by u(1) < "" J

'4 By the "symmetric spacings hypothesis" we mean

4 ,
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(3.1) 1: jl) "(j) u(Jl-j) (J-j)" J * 1, ... [(-1)/2].

We shall use Theorem 3 to verify that H is the union of subspaces. Let

H be a [(J-l)/2] x J matrix such that Hy = Q is equivalent to the conditions

|1j*1- Pj =IJ..-j " IiJ-..j" i 1. ... ,, [(J-1)/2]. If£ 0 e then vj = p(j).

j = 1, ... , J, whence Hu = 0 is equivalent to -(j.1) - "(j) - 1(J~t-j) -

3 -, ... , [(J-l)/2]. That is, N n O= - 0 n Oas required by Theorem 3.

Now, to verify that N c wO . Let I e N, that is, HM= 2. Let p = (ufIUj)iZ.

For any j - 1. [(J-l)/2], p3  - - V s- Jj-I pI

- - - So, each pair, .j and uJ+l-j" is syu-

metrically placed about u* (If J is odd, [(J-l)/2] * 1 + J - [(J-1)/2] and

V[(J-1)/2]l = VJ-[(J-)/2] a p.) If or = "(j) and Vs = 0(jl) then

VJ+l-r = V(J*I-j) and VJ.l-s V(J-j)" T1hs V(j.l) " U(j) = Vs - V - (V'-;1

S* - 10j+I-s - ("- a O~l-j) - ( j)" Therefo, p c 0. Hence

N c w0 as required by Theorem 3. By Theorem 3, the symetric spacings

hypothesis is the union of subspaces of dimension J - [(J-l)/2] and A* can

be used to tr 4"

This exales gives a good illustration of the fact that the a subspaceu

defined in Theorem 3 are not all distinct. Let J - 4. In this example,

a a 41 a 24 but actually 4 consists of only 3 distinct slubspaces. The 11

defined in the previous paragraph can be written as H a (1, -1, -1, 1).

These eight permutations of N a (: H - 0) all equal N itself: (1, .'. 3, 4 ,r (1. 3, 2, 4). (4. 2, 3, 1), (4, 3, 2, 1), (2. 1, 4, 3), (2, 4, 1, 3),

(3, 1, 4, 2), (3, 4, 1, 2). These eight permutations of N all yield the

subspace defined by (1, -1, 1, -)£U 0 0: (1, 2, 4. 3), (1, 3, 4, 2),

(4, 2. 1, 3), (4, 3, 1, 2), (2, 1. 3, 4), (2, 4, 3, 1), (3, 1, 2, 4),
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(3, 4, 2, 1). These eight permutations of N all yield the subspace defined

by (1, 1, -1, -l)u = 0: (1, 4, 2, 3), (1, 4, 3, 2), (4, 1, 2, 3), (4, 1, 3, 2),

(2, 3, 1, 4), (2, 3, 4, 1), (3, 2, 1, 4), (3, 2, 4, 1).

Example 2. (Symmetric Spacings with Specified Ratios). Again I = 1 so

the notation of Example 1 is used. Now the hypothesis of interest is a

1subhypothesis of H;, namely

(.) 2 - :c), j =2, ,J-1
(3.2) H;: 1(j~l) - 1(j) Cj(1( 2)'"(1 )) 2,

where c2, ..., cj.1 are specified positive constants with c j * cj

j = 2, ..., J-2, and cjI = 1. The restrictions on the cj imply that the

symmetric spacings are equal as in H0. H02 can be used to test whether the

means are spaced like the expected values of order statistics from some

symmetric distribution. For example, if c. = 1, j = 2, ..., J-l, the distri-

bution is the uniform. If J a S, c2 a c3 = .74111 and c4 a 1, the distri-

2bution is the normal. Theorem 3 can be used to verify that H0 , which is

subpermutation invariant, is the union of subspaces. Let H be a (J-2) x J

matrix such that HU, .0 is equivalent to the conditions j.l1 j = cj(P2"l)

j a 2, ..., J-l. Arguing as in Example 1 it is easy to verify that

N n O w0 n O. To verify that N c w0  let v c N, that is, Hu = O. If

P1 S20 then Ul S 2 5 ... s Uj since c. 0, j • 1, ... 0 J-l. Thus

e N n 0 a w0 n 0 c w0. If U1 a U2' then U1 a 2 a ... a jj. For cry

j = 2, ... , J-l, P(j+l) " (j) " J-j - J+l-j = -cj-j( 2-hl) = cjj(J-l-0j)

= cj(Uj. -0j) = c j(( 2)-a(1)). The second, third and fourth equalities Lre:

true since HU = 2, c0, 1, and c, - cj. Thus c w0 . By Theorem 3,

W0 is the union of 2-dimensional subspacos and A* can be used to test HO.
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E xamle 3. (Equal Spacings in Two Sets of Means). In this example there

are two sets of means of interest, I = 2 and J= = JO J/2. We are

interested in testing the hypothesis that the spacings in the first set,

Pilo ...'" PlJ, are equal to the spacings in the second set, U2 1 , ... U2J'"

That is, we wish to test

3(3.3) H0 : ,1(j+,) - i1(j) = U2 (j*l) - 12(j)' i = 1, . J--l.

3
To verify that H;, which is subpermutation invariant, is the union of sub-

spaces, let H be a (J'-l) x J matrix such that HU = 0 is equivalent to the

conditions P lj+l - Ulj = P2,j+l " p2j- j = I, ...j J'-l. As in Example 1,

it is easily verified that N n 0 =w n o. To verify that N c wO, let p e N.

For any j a 1, ' - ru ("2,r l"2r1 * =r-1 l -ii ) +
J @21 rul lrl ir 21

= lj + (P21"U11) Thus the set of means, P2 1 ' "-I 12J'" is a translation

of the set of means, p1 1  "" lJ. the amount of translation being ( 21-,.).

Thus the spacings among 021- 0..# " 2J' are all equal to the spacings among

Pilo .'" lJ. and 1e w0 " By Theorem 3, w0 is the union of

subspaces of dimension J- J+ I a J/2+ I and X* can be used to test 3

This argument can be easily extended to the situation in which one

wishes to test for equal spacings in I (I > 2) sets of means. In this ca: .'

H is an (I-I)(J'-l) x J matrix and the subspaces are of dimension

J - (1-1)(J'-1) a I + J, - I = I + J/1 - 1.

Example 4. (Equal Spacings in Two Sets of Means with Specified Ratios).

For this example, the notation is the same as in Example 3. We combine

the ideas in Examples 2 and 3 to consider testing

ul(j.-l) " (j) 2(j I) " 2(j)' J = 1 . ,J -

(3.4) X ()

P i , ) " ( Jj " i ( P 1 ( 2 ) ' ' 1 ) ) J 2 ,# .. J --
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where the c. satisfy the same conditions as in Example 2. This null

hypothesis is also subpermutation invariant. If we let w denote the

subspaces in Example 2 (now considered as subspaces of RJ with

U210 """° U2J° unrestricted) and let ns denote the subspaces in Example 3,I 4
we see that for H0, w 0 = (uw r) n (u ns) - u (or n ns). But for every r

r s rs
and s, wr n ns is a linear subspace of dimension 3. (The subspace wr

involves J-2 restrictions and ns involves an additional J'-l restricticns.

This results in wr n n. having dimension 3.) Thus A* can be used to test

4H0 .

4. Computation of the Test Statistic.

As in standard linear models theory, the LRT statistic X* can be

expressed as a product of matrices. This will simplify the computation

of A*. Furthermore, for the hypotheses described in Section 3, A* can be

computed without any minimization. These points will be discussed in this

section.

Let the J dimensional subspace w be defined as w It: C = No, kj}

where W is a known KxJ design matrix. Let the subspaces wj be defined by

i - I : C a WO, Hi t 0) where Hi is a known (J-qi)xJ matrix of rank

Jq i = 1, ... , m. Let (w'W)IW'X. Then analogous to standard

linear models theory we can write

SSHOF(4.1) *

where

(4.2) SSIN min j-H(H (W-W) 1 Wi-) -1H.I
0~~: 1 1"' i1s -ri



is

and

(4.3) SSR (Xok)(X-W).

Expression (4.2) is true since the numerator of P. in (2.S) is the minimum

of the sums of squares associated with each of the hypotheses Hi: C

By standard linear models theory these sums of squares are the expressions

given in (4.2).

For the examples considered in Section 3, the minimum in (4.2) does

not need to be computed. It is possible to determine which sum of squares

will be the minimum by examining the order of the sample means, as is shown

below. Thus only one sum of squares needs to be computed for these models.

For the remainder of this section, assume the model defined in Secti:n 5.

For this model = =where - (il "" iJ and
o K i'i OW ~ h I id

j • kal Xijk/Kij Let H, the matrix from Theorem 3, be partitioned as

Sa (C . C where C is a (J-q)xJ. matrix with columns c.l " i '

.i 1,..., 1. For i a 1, ... 1 suppose Ti(), ..., WiJi) isa Perm-

tation of 1, ..., 3 such that Iiwi(l) : .. s i ).  Define a (J-q)xJ

matrix H* by

(4.4) H* a (C : ... : C()

w. ere C1 is a (J-q) xJ matrix with columns c1 "* and c?. -
'"1 i "( )

p~s.,.Then the numerator of ), SSH O, is given in Theore 4.

Theorem 4. If H, 14, 0, and w0 satisfy the conditions of Theorem 3 and H

is defined by (4.4) then

(4.5) SSH0 XaH*"(H*(W*"IM I H*")'IH*R.

-' ' .. --1. i . , . _. .. - . .. . . . . .. '
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Thus the mtrix H* can be constructed by permuting the coluns of H

in a way dictated by the order of the sample means. Then SSH% can be

computed directly because H' is the particular H. which minimizes the sum1

of squares in (4.2). The proof of Theorem 4 uses the following two lemas.

Lemma 1. Suppose H, N, 0 and e0 satisfy the conditions of Theorem 3 and

H* is defined by (4.4). Let N* = (p c Rj:H = 0. Let

0 ( a p le: U i i. (ids i 1, I. Then N* c WO- ...(l <11iJi "

and N* n OV - 0 O 

Proof. For any pC 9, let W(U) V VWl("l), ..., :I(pI))- where

S (i ), ,.,iw(Ji)). Let Sj (Cijl, ... , Cijc(Jq))". Then

for any u e R3 and I s r s J-q, the rth coordinate of Hw(p) is

)~ ~ .. pand the rt coordinate of H1% Isi-I MU- ijr iw1(j)

ci~i1 jul = ~ ci-(j)ri 23 i1 jul Cijr~tw(j)" Thus

-w(u) - H'p for everyV .

If e E N', 2 = Hw(p). Thus w() ( N c w0 . Since u0 is sub-

permutation invariant, C o . Thus N* c O, and hence N* n 0' c w0 n 07.

If w0 n O
, then w(p) e O. Purtheriore i(p) C 00 since u0 is

subpermutation invariant. Thus w(p) e N. So 0 = Hw(ia) - H"p and, hence.

cN. Thus v e n o, and henceonO c ' o-n

Lema 2. Suppose IlVi(1) S ... S iW(Ji) for i 1, ... , i. Then fo any

(4.6) I (I 2 (I- 2

1!1 jl J1I

where M' is a s-z!,permetation of t: satisfying i'r.;) _ ..e U (.)
17fc.i- ..
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Proof. Let g(R. i) - K. .(R i) 2 aGQ-. It is easily shown
-•1 

i j i j

(Marshall and Olkin, 1979, p. 57) that G is Schur-concave. It follows by

Lemma 2.2 of Hollander, Proschan, and Sethuraman (1977) that g is decreasing

in transposition and, hence,

J. J.
2 2

- i K. ij( ij'-*j)2 -jil KijijUj)2 "

Inequality (4.6) follows since the above inequality holds for each

Proof of Theorem 4. Let N* and 0 be as in Lemma 1 and let

I i 2
g(Z, U) = I i Kij(Xij-uij) . The numerator of X'*() isiul jai

SSH0 a inf g (, )

: inf g(l, v) (since N* c w0 by Lemma 1)

(4.7)

s inf ,r g(R, u) (since 0 n Ow c N* by Lema 1)
seWonO7

inf g(Q, i),
)JEWO

the last equality being true by Leon 2 since w0 is subpermutation invarivot.

The second and last expression in (4.7) are equal so the inoqual'.,ic; .re

equalities. But by standard linear models theory, the exp're.sf.on ir-volvirg

N* in ( .7) is tl. c right hand side of (4.5). U
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We will now compute a small example using Theorem 4. Suppose we wish

to test the syimetric spacings hypothesis of Example I with J = 3 polu-

lations. So H a (1, -2, 1) can be used. Suppose n = 4 with two observations

on population 2, so
!P

1I 0 0'

0 1 0
Waq0 1 001

0 0 1

Suppose the observed mean vector is = (1, 10, 4)". Then H* = (1, 1, -2).

Equation (4.5) yields SSH0 = 18/11. The maximum likelihood estimate of

obtained as the projection onto N* is - (5/11, 107/11, 56/11). The sis

of squares corresponding to the projections onto the other two subspaces

in wO , those defined by Hp = 0 and (-2, 1, )1! z 0, are 225/4 and 288/11.

Clearly SSH0 is the minimum of the three sums of squares.
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